Дайверский форум: Дыхание Под Водой - Дайверский форум

Перейти к содержимому

Страница 1 из 1
  • Вы не можете создать новую тему
  • Вы не можете ответить в тему

Дыхание Под Водой

#1 Пользователь офлайн   vaja Иконка

  • Продвинутый пользователь
  • PipPipPip
  • Группа: Пользователи
  • Сообщений: 117
  • Регистрация: 04 Октябрь 12

Отправлено 07 Сентябрь 2013 - 10:41


Дыхание водой. Опыты Д. Килстра

Зарождение жизни
Жизнь на нашей планете зародилась, по-видимому, в воде — в среде, где запасы кислорода весьма скудны. При атмосферном давлении содержание кислорода в воздухе на уровне моря составляет 200 миллилитров на литр, а в литре поверхностного слоя воды растворено меньше семи миллилитров кислорода.

Первые обитатели нашей планеты, приспособившись к водной среде, дышали жабрами, назначение которых — экстрагировать максимальное количество кислорода из воды. В ходе эволюции животные освоили богатую кислородом атмосферу суши и начали дышать легкими. Функции дыхательных органов остались прежними.

Как в легких, так и в жабрах кислород через тонкие мембраны проникает из окружающей среды в кровеносные сосуды, а углекислый газ выбрасывается из крови в окружающую среду. Итак, и в жабрах и в легких протекают одни и те же процессы. Отсюда возникает вопрос: смогло бы животное с легкими дышать в водной среде, если бы в ней содержалось достаточное количество кислорода?

Ответ на этот вопрос заслуживает внимания по нескольким причинам. Во-первых, мы смогли бы узнать, почему дыхательные органы сухопутных животных так отличаются по строению от соответствующих органов водных животных.

Кроме того, ответ на этот вопрос имеет и чисто практический интерес. Если бы специально подготовленный человек смог дышать в водной среде, то это облегчило бы и освоение глубин океана и путешествия к далеким планетам. Все это и послужило основанием к постановке ряда экспериментов по изучению возможности дыхания сухопутных млекопитающих водой.


Проблемы при дыхании водой
Эксперименты проводились в лабораториях Нидерландов и США. Дыхание водой связано с двумя основными проблемами. Об одной уже говорилось: при обычном атмосферном давлении в воде растворено слишком мало кислорода. Вторая проблема заключается в том, что вода и кровь — жидкости с очень различными физиологическими свойствами. При «вдохе» вода может повредить ткани легких и вызвать фатальные изменения объема и состава находящихся в организме жидкостей.

Предположим, мы приготовили специальный изотонический раствор, где состав солей такой же, как и в плазме крови. Под большим давлением раствор насыщают кислородом (его концентрация примерно такая же, как в воздухе). Сможет ли животное дышать таким раствором?

Первые подобные эксперименты были проведены в Лейденском университете. Через шлюз, подобный спасательному шлюпу подводной лодки, мышей вводили в камеру, заполненную специально подготовленным раствором, и который под давлением был введен кислород. Через прозрачные стенки камеры можно было наблюдать за поведением мышей.

В первые несколько мгновений животные пытались выбраться на поверхность, но им мешала проволочная сетка. После первых волнений мыши успокаивались и, казалось, не очень страдали в подобной ситуации. Они совершали медленные, ритмичные дыхательные движения, по-видимому, вдыхая и выдыхая жидкость. Некоторые из них прожили в таких условиях в течение многих часов.


Главная трудность
После ряда опытов стало ясно, что решающим фактором, определяющим продолжительность жизни мышей, является не недостаток кислорода (который мог быть введен в раствор в любом нужном количестве простым повышением его парциального давления), а трудность выделения из организма углекислого газа в необходимой степени.

Мышь, прожившая самое длительное время — 18 часов,— находилась в растворе, в который было добавлено небольшое количество органического буфера, трис(оксиметил)аминометана. Последний сводит к минимуму неблагоприятный эффект накопления углекислого газа в организме животных. Снижение температуры раствора до 20 С (примерно половина нормальной температуры тела мыши) также способствовало продлению жизни.

В данном случае это обусловливалось общим замедлением процессов обмена веществ.

Обычно в литре выдыхаемого животным воздуха содержится 50 миллилитров углекислого газа. При прочих равных условиях (температура, парциальное давление углекислого газа) в одном литре солевого раствора, идентичного по своему солевому составу крови, растворяется только 30 миллилитров этого газа.

Значит, чтобы выделить необходимое количество углекислого газа, животное должно вдыхать воды вдвое больше, чем воздуха. (А ведь для прокачивания жидкости через бронхиальные сосуды требуется в 36 раз больше энергии, так как вязкость воды в 36 раз превышает вязкость воздуха.) Отсюда очевидно, что даже при отсутствии турбулентного движения жидкости в легких для дыхания водой необходимо в 60 раз больше энергии, чем для дыхания воздухом.

Поэтому нет ничего удивительного в том, что подопытные животные постепенно ослабевали, а потом — вследствие истощения и накопления в организме углекислого газа — дыхание прекращалось.


Результаты эксперимента
На основании проведенных опытов нельзя было судить о том, какое количество кислорода поступает в легкие, насколько насыщена им артериальная кровь и какова степень накопления в крови животных углекислого газа. Постепенно мы подошли к серии более совершенных экспериментов.

Они проводились на собаках в большой камере, снабженной дополнительным оборудованием. Камера наполнялась воздухом под давлением в 5 атмосфер. Здесь же находилась ванна с солевым раствором, насыщенным кислородом. В нее погружали подопытное животное. Перед экспериментом, чтобы снизить общую потребность организма в кислороде, собак анестезировали и охлаждали до 32°С.

Во время погружения собака совершала бурные дыхательные движения. Струйки воды, поднимающиеся с поверхности, ясно показывали, что она прокачивала раствор через легкие. По окончании эксперимента собаку вытаскивали из ванны, удаляли из легких воду и вновь наполняли их воздухом. Из шести животных, подвергшихся испытанию, одно выжило. Собака дышала в воде 24 минуты.

Результаты эксперимента можно сформулировать следующим образом: в определенных условиях животные, которые дышат воздухом, в течение ограниченного промежутка времени могут дышать водой. Главный недостаток водного дыхания — накопление углекислого газа в организме.

Во время опыта давление крови выжившей собаки было несколько меньше нормального, но оставалось постоянным; пульс и дыхание были медленными, но равномерными, артериальная кровь насыщена кислородом. Содержание углекислого газа в крови постепенно увеличивалось. Это означало, что бурная дыхательная деятельность собаки была недостаточной для удаления необходимых количеств углекислого газа из организма.


Новая серия опытов
В Нью-Йоркском государственном университете я продолжил работу совместно с Германом Рааном, Эдвардом X. Ланфиром и Чарльзом В. Паганелли. В новой серии опытов были применены приборы, позволившие получить конкретные данные по газообмену, происходящему в легких собаки при дыхании жидкостью. Как и прежде, животные дышали солевым раствором, насыщенным кислородом под давлением в 5 атмосфер.

Газовый состав вдыхаемой и выдыхаемой жидкости определяли на входе и выходе раствора из легких собак. Насыщенная кислородом жидкость попадала в организм находящейся под наркозом собаки через резиновую трубку, вставленную в трахею. Поток регулировался клапанным насосом.

При каждом вдохе раствор под действием силы тяжести стекал в легкие, а при выдохе жидкость по такому же принципу поступала в специальный приемник. Количество кислорода, поглощенного в легких, и количество выделенного углекислого газа определяли как разность соответствующих величин в равных объемах вдыхаемой и выдыхаемой жидкости.

Животных не охлаждали. Оказалось, что в этих условиях собака экстрагирует примерно такое же количество кислорода из воды, как обычно из воздуха. Как и следовало ожидать, животные не выдыхали достаточного количества углекислого газа, поэтому содержание его в крови постепенно увеличивалось.

По окончании эксперимента, продолжительность которого доходила до сорока пяти минут, воду из легких собаки удаляли через специальное отверстие в трахее. Легкие продували несколькими порциями воздуха. Дополнительных процедур по «оживлению» не проводили. Шесть из шестнадцати собак перенесли эксперимент без видимых последствий.


Взаимодействие трех элементов
Дыхание и рыб и млекопитающих основано на сложном взаимодействии трех элементов:

1) потребности организма в газообмене,

2) физических свойств окружающей среды и

3) строения органов дыхания.

Чтобы подняться выше чисто интуитивной оценки значения строения органов в процессе приспособления, необходимо точно понимать все эти взаимодействия. Следует, очевидно, поставить такие вопросы. Как молекула кислорода попадает из окружающей среды в кровь? Каков ее точный путь? Ответить на эти вопросы куда более сложно, чем можно предположить.

При расширении грудной клетки в легкие животного попадает воздух (или вода). Что же происходит с жидкостью, попавшей в пограничные воздушные мешочки легких? Рассмотрим это явление на простом примере. Если в частично заполненный водой шприц медленно вводить через иглу небольшое количество чернил, то они сначала образуют тоненькую струйку в центре сосуда. После прекращения «вдоха» чернила постепенно распространяются по всему объему воды.

Если же чернила вводить быстро, так, чтобы поток был турбулентным, смешивание произойдет, конечно, гораздо быстрее. На основании полученных данных, а также учитывая размер бронхиальных трубок, можно заключить, что вдыхаемый поток воздуха или воды входит в воздушные мешочки медленно, без турбулентности.

Следовательно, можно предположить, что при вдохе свежего воздуха (или воды) молекулы кислорода сначала сосредоточатся в центре воздушных мешочков (альвеол). Теперь им предстоит преодолеть посредством диффузии значительные расстояния, прежде чем они достигнут стенок, через которые попадут в кровь.

Эти расстояния во много раз больше толщины мембран, отделяющих в легких воздух от крови. Если вдыхаемой средой является воздух, это не имеет большого значения: кислород распределяется равномерно по всей альвеоле за миллионные доли секунды.

Скорость распространения газов в воде в 6 тысяч раз меньше, чем в воздухе. Поэтому при дыхании водой возникает разность парциальных давлений кислорода в центральной и периферийной областях. Вследствие малой скорости диффузии газов давление кислорода в центре альвеолы с каждым циклом дыхания становится выше, чем у стенок. Концентрация же углекислого газа, уходящего из крови, больше у стенок альвеолы, чем в центре.


Газообмен в легких
Такие теоретические предпосылки возникли на основании изучения газового состава выдыхаемой жидкости во время экспериментов на собаках. Воду, вытекающую из легких собаки, собирали в длинную трубку. При этом оказалось, что в первой порции воды, поступившей, по-видимому, из центральной части альвеол, кислорода больше, чем в последней, поступившей от стенок. При дыхании собак в воздушной среде ощутимой разницы в составах первой и последней порций выдыхаемого воздуха не наблюдалось.

Интересно отметить, что газообмен, происходящий в легких собаки при дыхании водой, очень напоминает процесс, протекающий в простой капле воды, когда на ее поверхности осуществляется обмен: кислород — углекислый газ. На основании такой аналогии была построена математическая модель легких, а в качестве функциональной единицы выбрана сфера с диаметром примерно в один миллиметр.

Расчет показал, что легкие составляют около полумиллиона таких сферических газообменных ячеек, передача газа в которых осуществляется только при помощи диффузии. Вычисленное количество и размер этих ячеек близко совпадают с количеством и размером определенных структур легких, называемых «первичными дольками» (лобулями).

По-видимому, эти дольки и являются главными функциональными единицами легких. Аналогично—с привлечением анатомических данных — можно построить математическую модель жабр рыб, первичные газообменные единицы которых будут иметь соответственно другую форму.

Построение математических моделей позволило провести четкую грань между органами дыхания млекопитающих и рыб. Оказывается, главное заключается в геометрической структуре дыхательных ячеек. Это становится особенно очевидным при исследовании зависимости, связывающей потребность рыбы в газообмене, а свойства окружающей среды с формой органов дыхания рыб.

В уравнение, выражающее данную зависимость, входят такие величины, как доступность кислорода, то есть его концентрация, скорость диффузии и растворимость в окружающей животное среде.

Объем вдыхаемого воздуха или воды, число и размер газообменных ячеек, количество кислорода, поглощаемого ими, и, наконец, давление кислорода в артериальной крови. Предположим, что рыбы имеют в качестве органов дыхания не жабры, а легкие. Подставив в уравнение реальные данные газообмена, протекающего при дыхании рыбы, мы обнаружим, что рыба с легкими не сможет жить в воде, так как расчет показывает полное отсутствие кислорода в артериальной крови вашей модели рыбы.

Значит, в предположении была ошибка, а именно: выбранная форма газообменной ячейки оказалась неверной. Рыбы живут в воде благодаря жабрам, состоящим из плоских, тонких, плотно упакованных пластинок. В такой структуре — в отличие от сферических ячеек легких — не возникает проблемы диффузии газов.

Животное с органами дыхания, подобными легким, может выжить в воде только в том случае, если потребность его организма в кислороде крайне мала. В качестве примера назовем голотурию (морской огурец).

Жабры дают рыбам возможность жить в воде, и эти же жабры не позволяют им существовать вне воды. На воздухе они разрушаются под действием силы тяжести. Поверхностное натяжение на границе воздух — вода вызывает слипание плотно упакованных жаберных пластинок.

Общая площадь жабр, доступная для газообмена, уменьшается настолько, что рыба не может дышать, несмотря на обилие кислорода в воздухе. Альвеолы легких предохраняются от разрушения, во-первых, грудной клеткой, во-вторых, выделяющимся в легких смачивающим агентом, который значительно уменьшает поверхностное натяжение.


Дыхание млекопитающих в воде
Изучение процессов дыхания млекопитающих в воде дало, таким образом, новые сведения об основных принципах дыхания вообще. С другой стороны, возникло реальное предположение, что человек сможет без вредных последствий ограниченное время дышать жидкостью. Это позволит водолазам спускаться на значительно большие глубины океана, чем сейчас.

Главная опасность глубоководного погружения связана с давлением воды на грудную клетку и легкие. В результате в легких повышается давление газов, и часть газов попадает в кровь, что приводит к серьезным последствиям. При высоких давлениях большинство газов токсично для организма.

Так, азот, попадающий в кровь водолаза, вызывает интоксикацию уже на глубине 30 метров и практически выводит его из строя на глубине 90 метров благодаря возникающему азотному наркозу. (Эта проблема может быть решена использованием редких газов, таких, как гелий, которые не токсичны даже при очень высоких концентрациях.)

Кроме того, если водолаз возвращается слишком быстро с глубины на поверхность, газы, растворенные в крови и тканях, выделяются в виде пузырьков, вызывая кессонную болезнь.

Этой опасности можно избежать, если водолаз будет дышать не воздухом, а жидкостью, обогащенной кислородом. Жидкость в легких выдержит значительные внешние давления, а объем ее при этом практически не изменится. В таких условиях водолаз, опускаясь на глубину в несколько сот метров, сможет быстро, без всяких последствий вернуться на поверхность.

В доказательство того, что кессонная болезнь не возникает при дыхании водой, в моей лаборатории были проведены следующие опыты. В экспериментах с мышью, которая дышала жидкостью, давление в 30 атмосфер в течение трех секунд доводили до одной атмосферы. Признаков заболевания не наблюдалось. Такая степень изменения давления эквивалентна эффекту подъема с глубины 910 метров со скоростью 1 100 километров в час.


Человек может дышать водой
Дыхание жидкостью может пригодиться человеку во время будущих путешествий в космос. При возвращении с далеких планет, например, с Юпитера, возникнет потребность в огромных ускорениях, позволяющих выйти из зоны притяжения планеты. Эти ускорения значительно больше того, что может вынести организм человека, особенно легко уязвимые легкие.

Но те же нагрузки станут вполне допустимыми, если легкие будут заполнены жидкостью, а тело космонавта погружено в жидкость с плотностью, равной плотности крови, подобно тому, как плод погружен в амниотическую жидкость материнской утробы.

Итальянские физиологи Рудольф Маргариа, Т. Гволтеротти и Д. Спинелли в 1958 году ставили такой опыт. Стальной цилиндр, в котором находились беременные крысы, бросали с разных высот на свинцовую опору. Целью эксперимента было проверить, выживет ли плод в условиях резкого торможения и толчка при приземлении. Скорость торможения вычисляли по глубине вдавливания цилиндра в свинцовую основу.

Сами животные в ходе опыта немедленно погибали. Вскрытия показывали значительное повреждение легких. Однако освобожденные хирургическим путем эмбрионы были живыми и развивались нормально. Плод, защищенный утробной жидкостью, способен перенести отрицательные ускорения до 10 тысяч g.

После экспериментов, показавших, что сухопутные животные могут дышать жидкостью, резонно предположить такую возможность и для человека. В настоящее время мы располагаем некоторыми прямыми доказательствами в пользу этого предположения. Так, например, нами используется сейчас новый метод лечения некоторых заболеваний легких.

Метод состоит в промывании одного легкого солевым раствором, удаляющим патологические выделения из альвеол и бронхов. Второе легкое дышит при этом газообразным кислородом. Успешное осуществление этой операции вдохновило нас поставить эксперимент, на который добровольно вызвался мужественный водолаз – глубинник Фрэнсис Д. Фалейчик.

Под наркозом в его трахею был введен двойной катетер, каждая трубка которого доходила до легких. При нормальной температуре тела воздух в одном легком заменили 0,9-процентным раствором поваренной соли. «Дыхательный цикл» заключался в ведении солевого раствора в легкое и последующем удалении его.

Цикл был повторен семь раз, причем для каждого «вдоха» брали 500 миллилитров раствора. Фалейчик, находившийся в течение всей процедуры в полном сознании, рассказал, что он не заметил значительной разницы между легким, дышащим воздухом, и легким, дышащим водой. Он не испытывал также неприятных ощущений при входе и выходе потока жидкости из легкого.

Конечно, этот опыт еще очень далек от попытки осуществить процесс дыхания обоими легкими в воде, но он показал, что заполнение легких человека солевым раствором, если процедура выполнена правильно, не вызывает серьезных разрушений тканей и не производит неприятных ощущений.


Самая трудная проблема
Вероятно, самая трудная проблема, которую предстоит разрешить, связана с выделением из легких углекислого газа при дыхании водой. Как мы уже говорили, вязкость воды примерно в 36-40 раз больше вязкости воздуха. Это значит, что легкие будут прокачивать воду, по крайней мере, в сорок раз медленнее, чем воздух.

Другими словами, здоровый молодой водолаз, способный вдыхать 200 литров воздуха в минуту, сможет вдохнуть в минуту всего 5 литров воды. Вполне очевидно, что при таком дыхании углекислый газ не будет выделяться в достаточном количестве, даже если человек целиком погружен в воду.

Можно ли разрешить эту проблему использованием среды, в которой углекислый газ растворяется лучше, чем в воде? В некоторых сжиженных синтетических фтороуглеродах углекислого газа растворяется, например, в три раза больше, чем в воде, а кислорода — в тридцать раз. Леланд С. Кларк и Франк Голлан показали, что мышь может жить в содержащем кислород жидком фтористом углероде при атмосферном давлении.

Во фтористом углероде не только содержится больше кислорода, чем в воде, но в этой среде в четыре раза выше и скорость диффузии газа. Однако и здесь по-прежнему остается камнем преткновения малая пропускная способность жидкости через легкие: фтороуглероды обладают еще большей вязкостью, чем солевой раствор.

Перевод с английского Н. Познанской.

источник: http://www.rusdolphin.com



0

#2 Пользователь офлайн   leo1 Иконка

  • Продвинутый пользователь
  • PipPipPip
  • Группа: Пользователи
  • Сообщений: 104
  • Регистрация: 03 Май 13

Отправлено 04 Октябрь 2013 - 22:34

Привет всем! Хороший обзор о дыхании. Рекомендую.

Легкое дыхание под водой.

В обычных условиях мы не задумываемся о собственном дыхании - это непроизвольный рефлекторный процесс. Но дышать естественным образом на поверхности не тоже самое, что во время погружения под воду с аквалангом: дыхание через регулятор - неестественный акт, но погружение с аквалангом без него невозможно. Следует уделить особое внимание этой "неестественной" составляющей подводных приключений. Погружение на небольшую глубину в теплой воде - это погружение для отдыха в комфортных и в известной степени безопасных условиях. В случае погружения, например, к затонувшему объекту на глубину порядка 40 м приводит к увеличению физической нагрузки, а дыхание через регулятор может вызвать значительное изменение уровня кислорода, двуокиси углерода и азота в различных тканях организма. Подобные перемены в свою очередь могут вызвать резкое изменение в функционировании дыхательной системы. Отсюда вывод: при погружении с аквалангом вы должны осознанно регулировать свой дыхательный процесс, с тем, чтобы избежать возникновения панических состояний и потери самоконтроля, если вдруг вы почувствуете нехватку воздуха или изменения в вашем самочувствии. Человек в состоянии паники совершает необдуманные спонтанные действия, которые могут привести к эмболии или декомпрессионным состояниям, а в случае потери сознания вы рискуете просто утонуть.

Изображение

Причины возникновения панических состояний или потери сознания под водой часто трудно точно определить, но природа травм и медицинские заключения, сделанные по поводу несчастных случаев под водой косвенно подтверждают, что регуляция дыхания в этих случаях играет важную роль. К сожалению, сведения о глубинных механизмах влияния дыхания на психическое и эмоциональное состояние человека далеко не полные, т.к. исследования, по понятных причинам, проводятся достаточно редко.

Дыхание в обычных условиях осуществляется рефлекторно, такой механизм заложен природой, чтобы обеспечить физиологически необходимое содержание кислорода и двуокиси углерода в крови и тканях. Мы не задумываемся как это делается - просто дышим. Отличные от обычных уровни кислорода, двуокиси углерода и азота могут оказывать на организм независимое, кумулятивное или интерактивное влияние, которое обостряется глубиной погружения, уровнем физической нагрузки, задержкой дыхания и повышением плотности вдыхаемого газа. Ни в коем случае не следует под водой терять контроль над дыханием.

Случай 1. Последствия накопления двуокиси углерода и диспноэ (нарушение частоты дыхания).

Изображение

"Мы испытывали новый велотренажер-эрогонометр в изолированной камере при повышенном давлении воздуха. В таких условиях достаточно выражено действие азотного наркоза. Наше состояние было удовлетворительным до тех пор, пока мы не перешли на дозированную подачу воздуха, которая обеспечивала нам лишь половину от необходимого притока свежего воздуха. Напарник прекратил крутить педали уже через 3 минуты эксперимента, у него упала температура тела и "закатились" глаза. Я продолжил испытание, хотя понимал, что воздуха не достаточно, но был решительно настроен завершить эксперимент. В итоге я довел себя до состояния забытья, выходя из которого я испытал самое жуткое ощущение в моей жизни - чувство удушья. Если бы я и мой напарник находились в воде мы неминуемо утонули бы."
Спецфизиолог E. Lanphier.

Накопление двуокиси углерода и нарушение частоты дыхания - причина возникновения панических состояний.

Смеси, которыми аквалангист дышит под водой, практически всегда содержат больше кислорода, чем требуется. Пусковым моментом рефлекторного акта дыхания является накопление в крови двуокиси углерода. Парциальное давление кислорода в газовых смесях для дыхания под водой выше нормы, которая составляет 0,21 атм., а биохимия крови не приспособлена к нормальному газообмену кислорода и двуокиси углерода при таких условиях. Большая часть кислорода, поступающего в организм, переносится в химическом соединении с гемоглобином, содержащемся в красных кровяных тельцах (эритроцитах), в то время как углекислый газ в большей степени растворяется в жидких фракциях крови. На поверхности содержание кислорода в венозной крови понижено, а молекулы двуокиси углерода связываются с освободившимся от кислорода гемоглобином. При повышенном парциальном давлении кислорода во время погружения под воду относительная концентрация в венозной крови связанной гемоглобином двуокиси углерода снижается, т.к. значительно количество гемоглобина по-прежнему занято кислородом, но увеличивается концентрация двуокиси углерода, растворенной в крови, что приводит к общему повышению уровня двуокиси углерода в крови и тканях. Таким образом, не смотря на то, что относительное содержание кислорода в крови достаточно, центр нервной системы, регулирующий дыхание, постоянно получает сигнал, что нужно активизировать дыхание.

При нормальных обстоятельствах высокий уровень СО2 вызывает у человека учащенное дыхание и усиление вентиляции легких приводит к выводу из организма избытка СО2. Под водой этот механизм не срабатывает - даже при учащенном дыхании уровень двуокиси углерода не понижается, повышенное давление в окружающей среде просто не позволяет легким выделить весь накопленный СО2, в результате появляется одышка (диспноэ) и субъективное ощущение "нехватки" воздуха.

Изображение

Причины накопления двуокиси углерода в организме могут быть различными. На поверхности допустимые уровни физической нагрузки лимитируются, преимущественно, особенностями сердечно-сосудистой системы. Но во время дайвинга именно функции дыхательной системы становятся ограничивающим фактором. При погружении на глубину происходит перераспределение объема крови от нижних конечностей к легким, что в совокупности в повышением давления приводит к уменьшению общего объем легких и, соответственно, изменению режима дыхания. Нормальное функционирование дыхательной системы затрудняется и из-за необходимости преодолевать сопротивление потока вдыхаемого через регулятор воздуха, что вызвано ростом плотности вдыхаемого газа при увеличении с одной стороны глубины и давления, а с другой - нарастанием утомления при увеличении физических нагрузок.

Обычно дыхание через регулятор требует некоторого дополнительного усилия, чтобы открыть свободный поток воздуха через систему подачи. Это не представляет никакой проблемы для аквалангиста, совершающего несложное погружение в хорошо отрегулированном современном оборудовании. Но при определенных условиях, например, из-за разницы давления, зависящей от того, на какой глубине находятся легкие аквалангиста, а на какой - регулятор первой ступени, требуются дополнительные усилия для нормального дыхания.

Концентрация двуокись углерода в организме может увеличиться во время дайвинга, если возникает стрессовая ситуация, человек испытывает волнение или, возможно, азотный наркоз препятствует нормальному дыханию. Иногда аквалангисты сознательно ограничивают дыхательную активность, тормозят дыхание, чтобы сохранить побольше воздуха, что может стать причиной головных болей, появляющихся после погружения.

Нарушение ритма дыхания, паника и быстрое всплывание на поверхность.

Избыток двуокиси углерода обычно вызывает ощущение затрудненного дыхания или одышки, в результате человек испытывает испуг, часто сопровождающийся панической реакцией. Возможна и противоположная ситуация - так как парциальное давление кислорода увеличивается, рост концентрации двуокиси углерода может стать менее эффективным сигналом к усилению вентиляции, что приводит к дальнейшему накоплению СО2.

Важность равномерного дыхания под водой не всегда в достаточной степени подчеркивается во время первоначальной подготовки аквалангистов. Неопытные новички, хотя и прошедшие специальную подготовку, особенно подвержены панической реакции на одышку, что часто приводит к неоправданно быстрому всплытию на поверхность, а это, как известно, прямой путь к декомпрессионной болезни или закупорке кровеносных сосудов, а часто и того и другого вместе.

Если человек предполагает, что дыхание под водой ничем не отличается от дыхания на поверхности, его ждет неприятный сюрприз, если на глубине ввиду реальной или кажущейся экстренной ситуации у него возникнет потребность в активизации дыхания. Хотя такая ситуация может быть очень поучительной, в плане накопления опыта поведения под водой, но, скажем прямо, это не лучший способ получать знания.

Если по какой-либо причине вам не избежать внезапного увеличения физической нагрузки, специалисты рекомендуют увеличить вентиляцию легких путем более глубокого дыхания, но не за счет учащения ритма. Это лучший способ избежать ощущения, что у вас "перехватывает" дыхание или не хватает воздуха. Как быть если вы все-таки "потеряли" дыхание? Лучший способ прекратить какие-либо движения, расслабиться и дать возможность дыханию восстановиться.

Как избежать "азотного наркоза" и уменьшить накопление двуокиси углерода в тканях.

Риск потери сознания под водой в следствие "азотного наркоза", отравления кислородом или избыточного накопление углекислого газа, прямо пропорционален глубине, на которую вы погружаетесь на обычном воздухе.

Аквалангистам, которые намерены совершать глубоководные погружения, следует использовать смеси "Гелиокс" - гелий и кислород, либо траймикс - гелий, азот и кислород. Правда использование этих смесей также имеет свои ограничения и требует дополнительной тренировки, опыта и специального оборудования.

Несчастные случаи, травмы и безопасность.

Прямые доказательства причинно-следственной связи между нарушением дыхания возникновением паники и неоправданно быстрого всплытия встречаются редко, однако, данные, опубликованные в отчете DAN "Декомпрессионные состояния и несчастные случаи при погружении с аквалангом" за 2000 год позволяют предположить, что именно неоправданно быстрое всплытие часто сопровождает несчастные случаи с получением травм вплоть до смертельного исхода. На рисунке 1 приведены сравнительные данные о том, как часто неоправданно быстрое всплытие сопровождало погружения с получение тяжелых травм, смертельным исходом и благополучные погружения без последствий для здоровья. Итак, неоправданно быстрое всплытие зафиксировано в 38 % погружений со смертельным исходом, в 23 % погружений, повлекших травмы и в 1 % благополучных, с точки зрения несчастных случаем, погружений.

Причин неоправданно быстрого всплытия может множество, в том числе потеря контроля за плавучестью или нехватка воздуха для дыхания. На рис. 2, например, приведены данные о том, что нехватка воздуха была зафиксирована в 24 % случаях со смертельным исходом, в 5 % случаев, повлекших травмы, и лишь в 0,3 % благополучных погружений.

Случай 2. Потеря сознания на глубине.

В условиях барокамеры, заполненной водой, моделировалось погружение на глубину 54 метра. Испытуемый "плыл" преодолевая сопротивление, которое создавалось тросом, прикрепленным к грузу. Потребление кислорода составляло 2 литра в минуту. В эксперименте испольховался ребризер закрытого цикла. Парциальное давление кислорода поддерживалось на уровне 1,4 атм. Остальной состав смеси - азот в концентрации дающей наркотический эффект соответствующий дыханию воздухом на глубине 53 метра. Наблюдатель зафиксировал тот факт, что испытуемый постоянно во время эксперимента увеличивал интенсивность выполнения упражнения, не смотря на указание снизить нагрузку. Неожиданно, без всякого предупреждения испытуемый потерял сознание. Эксперимент был немедленно прекращен, испытуемый был извлечен из камеры и очень быстро пришел в себя. Случись такая ситуация в условиях реального погружения, последствия могли бы быть столь же серьезные, что и описанные ниже.

Случай 3. Потеря сознания во сремя глубоководного погружения, повлекшая смерть.

Два опытных аквалангиста совершали погружение к затопленному на глубине 42-51 метр объекту. Через 15 минут нахождения на глубине один из аквалангистов дал знак своему бадди, что у него неприятности и они начали вместе подъем на поверхность. На глубине 24 метра пострадавший дайвер потерял сознание и выпустил регулятор. Попытка бадди вставить регулятор в рот товарища, окончилась неудачей. В результате пострадавший скончался в результате утопления. Аутопсия показала, что первопричиной несчастного случая послужило нарушение сердечной деятельности.

Учащенное дыхание на глубине приводит к накоплению СO2 в организме человека. Этот эффект становится очевидным при увеличении парциального давления кислорода до 1,4 атм. Повышение концентрации двуокиси углерода в организме человека может оказывать "наркотический" эффект. Азотный "наркоз" и "наркоз", вызванный накоплением двуокиси углерода, имеют взаимодополняющий эффект, т.е. если аквалангист находится под воздействием обоих "наркозов", риск потери сознания увеличивается. Эффект таких явлений как азотный "наркоз", повышенные физические нагрузки, затруднение дыхания, высокое парциальное давление кислорода и накопление двуокиси углерода проиллюстрирован вышеописанными случаями. Повышение концентрации двуокиси углерода также приводит к усилению внутричерепного кровотока, следовательно - повышенное снабжение кислородом головного мозга, возможный результат - кислородное отравление нервной ткани. Комбинированный эффект азотного и углеродного "наркозов" и кислородного отравления многократно повышает риск нарушения сознания. Усугубляющее действие оказывает повышение физической нагрузки и увеличение плотности вдыхаемого газа, что опять же влечет за собой накопление в крови двуокиси углерода. Рисунок 3 иллюстрирует связи между глубиной погружения, физическими характеристиками газов, уровнем физической нагрузки и риском потери сознания.

Не вызывает сомнений, что чувствительность или устойчивость к отравлению двуокисью углерода или кислородом, равно как и к азотному наркозу в большой степени зависит от индивидуальных особенностей организма того или иного человека. К сожалению, мы не располагаем достаточно надежными методами, которые позволили бы с уверенностью диагносцировать индивидуальную переносимость и ее изменение в тех или иных условиях.

В заключении можем лишь рекомендовать обращать особое внимание на процесс вашего дыхания при погружении под воду с аквалангом: какими бы ни были ваши индивидуальные особенности рекомендуем держаться в рамках безопасной статистики!!!



Dr. Richard Vann
DAN Research
по материалам Alert Diver IV 2000


Источник: http://www.videodive.ru
0

#3 Пользователь офлайн   almaz Иконка

  • Продвинутый пользователь
  • PipPipPip
  • Группа: Пользователи
  • Сообщений: 90
  • Регистрация: 12 Май 13

Отправлено 31 Январь 2014 - 21:50

Привет!
Вот ещё о дыхании под водой
Для нормальной жизнедеятельности организма необходимо, чтобы каждая клетка постоянно получала различные питательные вещества, кислород и отдавала углекислоту и другие отработанные продукты.

Процесс обмена веществ можно сравнить с горением в печи; правда в печи горит топливо, а в живом теле - "горит" само тело; в организме непрерывно разрушается и вновь воссоздается живой белок, из которого состоят клетки нашего тела. И как только это "горение" прекращается, прекращается и жизнь.

Простейшие одноклеточные организмы получают нужный им для жизни кислород непосредственно через оболочку клетки из воды, в которой они обитают. По мере усложнения организмов увеличиваются и размеры их тела, появляются специальные органы, способные воспринимать и доставлять клеткам кислород. Появляются дыхательная и кровеносная системы.

Своеобразно построила природа органы дыхания у насекомых. Все тело их пронизывают тончайшие трубочки, через которые воздух достигает клеток. У рыб есть специальный дыхательный аппарат - жабры, состоящие из маленьких мешочков.
Изображение
Через эти мешочки непрерывно протекает вода, их стенки пронизывает густая сеть кровеносных сосудов. Проходя через жабры, кровь обогащается кислородом.

Однако вода содержит немного кислорода. В одном литре растворено лишь 10 кубических сантиметров этого газа, и поэтому, чтобы снабдить организм нужным количеством кислорода, через жабры должно протекать очень много воды. У писателя Александра Беляева есть известный научно-фантастический роман "Человек-амфибия". В нем автор рассказывает о фантастической операции - пересадке человеку жабер от рыбы. После этой операции герой смог плавать под водой вместе с рыбами многие часы. Все мы помним увлекательные приключения человека-амфибии, но не все, наверное, знают, что если бы медицина смогла осуществить подобные операции, жизнь человека под водой все же была бы невозможна именно из-за малого содержания кислорода в воде.

В состоянии покоя человек потребляет в минуту 0,25 - 0,30 литра кислорода, а при тяжелой физической работе - до б литров в минуту. Если бы человек получал этот кислород не из воздуха, а из воды, то через дыхательный аппарат надо было бы прогонять огромное количество воды в минуту; дыхательный аппарат должен был бы обладать мощностью гидромонитора. Конечно, наша дыхательная система не выдержит подобного напряжения. (см. сердце и легкие).

Жизнь человека под водой возможна лишь при сохранении легочного дыхания и снабжения легких кислородом воздуха. Вот почему водолаз и пловец с аквалангом снабжаются приспособлениями для непрерывной подачи воздуха. Акваланги имеют специальные баллоны со сжатой дыхательной смесью, водолазу сжатый воздух подается из компрессора. Только ныряльщики и подводные охотники, плавая у поверхности воды, могут дышать через простую трубку, соединяющую их с атмосферой.

Естественно, возникает вопрос: зачем создавать столь сложные системы подачи воздуха - компрессоры, баллоны,- когда можно с помощью простой трубки соединить человека, находящегося под водой, с атмосферой? Вопрос этот отнюдь не праздный, с ним связано решение важных проблем различного рода подводных работ, спасательной службы и т.д.

Опыт показывает, что дышать с помощью простой трубки, выходящей из-под воды на поверхность, может лишь человек, нырнувший не очень глубоко. Попытки дышать через такую трубку на больших глубинах кончались трагически: наступало кровоизлияние в легкие. В чем же дело?

Наши легкие представляют собой воздушные мешки, состоящие из крошечных долек, маленьких мешочков - альвеол. Общий объем легких невелик - несколько литров. Но воздух в них распределяется равномерно по альвеолам, суммарная поверхность которых превышает 90 квадратных метров. На этой площади воздух непрерывно соприкасается с кровью, протекающей через систему тончайших капилляров, опутывающих, словно прутья плетеной корзинки, каждую альвеолу густой сетью. Воздух и кровь здесь разделяет лишь стенка альвеолы и стенка капилляра, каждая толщиной в несколько микронов.

Через эти тончайшие стенки происходит непрерывный обмен газов между кровью и воздухом. В крови, попадающей в легкие, много углекислоты и мало кислорода. Кислород переходит из воздуха альвеол в кровь, а углекислота, наоборот, покидает кровь и переходит в альвеолярный воздух. Этот процесс целиком определяется разностью давлений газов по обеим сторонам альвеолярной стенки. Человек, находящийся на большой глубине под водой, испытывает сильное давление воды. На каждые 10 метров глубины давление увеличивается на одну атмосферу. Вода равномерно давит на всю поверхность тела, вызывая повышение давления и внутри организма. Следовательно, у человека, находящегося на глубине 10 метров, давление внутри тела на одну атмосферу выше, чем на поверхности. Если такой человек попытается дышать через трубку, сообщающуюся с атмосферным воздухом, то давление воздуха в альвеолах окажется на одну атмосферу меньше, чем давление крови в капиллярах легких. Эта разность давлений будет сдеоживаться лишь тончайшими стенками капилляров и альвеол на поверхности, равной 90 квадратным метрам.

Как известно, давление в одну атмосферу - это давление с силой в один килограмм на площадь, равную одному квадратному сантиметру. На квадратный метр давление будет 10 000 килограммов, то есть 10 тонн, а на всей поверхности альвеол - 900 тонн. Такая сила немедленно прорвет тончайшие стенки альвеол и капилляров. Возникнет кровоизлияние в легкие, от которого человек погибнет. Поэтому ныряльщик и водолаз не могут дышать через трубку, выдвинутую на поверхность воды. Давление воздуха, подаваемого в легкие, должно быть равно давлению воды на глубине, на которой находится человек.

Но представьте на минуту, что в системе, подающей водолазу воздух под давлением, что-то испортилось и человека нужно срочно поднять на поверхность. Если это сделать немедленно, то воздух, растворенный в крови под большим давлением, не успеет выйти через легкие и начнет бурно выделяться в виде пузырьков прямо в просвет кровеносных сосудов. В крови произойдет нечто, напоминающее вспенивание газированной воды, налитой из сатуратора в стакан. Чтобы этого не произошло, водолаза поднимают постепенно, давая достаточно времени для выделения избытков газа через легкие.
0

Поделиться темой:


Страница 1 из 1
  • Вы не можете создать новую тему
  • Вы не можете ответить в тему

1 человек читают эту тему
0 пользователей, 1 гостей, 0 скрытых пользователей